MINERALOGIA - SPECIAL PAPERS, 33, 2008 www.Mineralogia.pl

MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE

Formation of clay minerals in a depleted gas reservoir, Molasse Zone, Austria

Magdalena BOTTIG¹, Susanne GIER¹ and Wolfdietrich JILG²

¹Department of Geodynamics and Sedimentology, University of Vienna, 1090 Wien, Austria; magdabottig@yahoo.com ²Rohöl-Aufsuchungs AG (RAG), Schwarzenbergplatz 16, 1015 Wien, Austria

Sandstones of the studied Miocene gas reservoir are resedimented deposits from the southern slope of the Austrian Alpine Molasse Basin. Reservoir rocks are heterogeneous medium- to coarse grained sandstones containing large clasts of shales and carbonates. The gas reservoir has been produced and is now used for underground gas storage. To better understand the mineralogy of the reservoir sandstones with respect to the different zones (gas-, water- and transition zone) and the effect of drilling fluids to the formation, multiple analyses were carried out.

Diagenetic alterations in the sandstones are feldspar overgrowths on detrital K-feldspar grains; authigenic quartz overgrowths; framboidal pyrite formation, later dissolution and octahedral pyrite formation; calcite- and dolomite cementation; authigenic clay mineral formation and an early formation of glauconite.

The focus was to characterise the authigenic clay fraction (excluding shale clasts) in the different zones. Samples of the gas-bearing, the transition, the secondary watered and the initial water zone were analysed.

X-ray diffraction analyses of the clay fractions showed that there are clear zonedependent differences. Increasing crystallinity of smectite, chlorite and illite from the gasbearing to the initial water zone and an increase in the clay mineral content could be observed. Most important is the fact, that there are no expandable clay minerals in the gasbearing zone. This changes in the transition zone where smectites are developing.

There is a considerable effect of the rising water level (due to gas production) on the authigenesis of clay minerals in the pore space. Within a few years of the start of water infiltration new clay minerals are forming. Existing ones start to recrystallise and expandable clays appear in the transition zone where primarily none were present.

The drilling mud had little interaction with the reservoir rocks. Expandable clay minerals showed different behavior from the outer rim (about 1cm) of the cores towards the center. Smectites absorbed potassium from the drilling mud which resulted in a decrease of the interlayer spacing.